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ABSTRACT

Real world data often fail to meet the underlying assumption of population

normality. The Rank Transformation (RT) procedure has been recommended as

an alternative to the parametric factorial analysis of covariance (ANCOVA). The

purpose of this study was to compare the Type I error and power properties of the

RT ANCOVA to the parametric procedure in the context of a completely

randomized balanced 3 x 4 factorial layout with one covariate. This study was

concerned with tests of homogeneity of regression coefficients and interaction

under conditional (non)normality. Both procedures displayed erratic Type I error

rates for the test of homogeneity of regression coefficients under conditional

nonnormality. With all parametric assumptions valid, the simulation results

demonstrated that the RT ANCOVA failed as a test for either homogeneity of

regression coefficients or interaction due to severe Type I error inflation. The

error inflation was most severe when departures from conditional normality were

extreme. Also associated with the RT procedure was a loss of power. It is

recommended that the RT procedure not be used as an alternative to factorial

ANCOVA despite its encouragement from SAS, IMSL, and other respected

sources.
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1. INTRODUCTION

The Rank Transformation (RT) procedure is appealing due to its simplicity

and ease of execution. The steps for testing hypotheses are: (1) replace the raw

scores with their respective rank order, (2) conduct the classical normal theory

tests on the ranks, and (3) refer the test statistic to the usual tables of percentage

points. Most statistics software packages contain the parametric tests and the

ranking or sorting routines necessary to easily conduct the RT procedure.

Conover and Iman (1982) promoted the use of the RT as an alternative to

the parametric analysis of covariance. This was an elaboration stemming from

their overview of the RT (Conover & Iman, 1981). The extension of the RT to

ANCOVA was based on Monte Carlo results from factorial ANOVA (Iman,

1974; Conover & Iman 1976) and regression (Iman & Conover, 1979) designs.

Conover and Iman (1982) presented a general linear model using dummy

coding to consider both total-group and within-group regression slopes. Thus, the

RT ANCOVA was also suggested for the purpose of testing the assumption of

homogeneity of regression coefficients. Most other competing nonparametric

procedures (e.g., Hettmansperger, 1984; Puri & Sen, 1969a; Quade, 1967)

consider only the total-group regression slope. As such, the condition of equal

slopes must be assumed to hold in order to safely use the competing procedures.

Conover and Iman (1982) asserted, "The rank transform procedure can be

extended beyond the one-way ANCOVA by further use of dummy-variables" (p.

723). Subsequently, Conover and Iman (1982) provided an example of how to

extend the RT procedure to factorial ANCOVA using a 2 x 3 layout with one

covariate and with three observations per cell. They described tests for: (a) the full

model, (b) homogeneity of regression slopes, (c) interaction, and (d) main effects.

Empirical research by Harwell and Serlin (1988), Olejnik and Algina

(1984, 1987), Seaman, Algina, & Olejnik (1985), and Stephenson and Jacobson

(1988) found conditions favorable for the one-way RT ANCOVA. Extension to



the factorial case was also postulated. For example, Olejnik and Algina (1985),

stated: "The rank transformation can be used in factorial designs and with

multiple covariates" (p. 62). Similarly, Harwell and Serlin (1988) claimed: "Under

the rank transformation principle of Conover and Iman (1981), rank ANCOVA

could be extended to the multiple covariate/factorial ANCOVA case, although its

asymptotic distributional properties would be unknown" (p. 271).

More recently, Deshon and Alexander (1996) also suggested the use of the

RT for the test of homogeneity of regression slopes. Recent suggestions

promoting the use of the RT in factorial designs have also been made (Choi, 1998;

Potvin & Roff, 1993; Regeth & Stine, 1998). For example, Regeth and Stine

(1998) submitted, "for two-way designs (involving an interaction), the ANOVA

test can be run, using the rank orderings of data points rather than the actual

scores" (p. 708). Further, some recent examples of applications of the RT in

complex designs include multiple regression (Angermeier & Winston, 1998) and

factorial ANOVA (Augner, Provenza, & Villalba, 1998). It should be noted that

these suggestions and applications of the Rank Transform to the general linear

model have been made despite studies that have demonstrated numerous

limitations of the RT in complex designs (e.g., Akritas, 1990; Brunner &

Neumann, 1986; Sawilowsky, Blair, & Higgins, 1989; Thompson, 1991).

2. PURPOSE OF THE STUDY

The purpose of this study is to investigate the Rank Transformation

ANCOVA as an alternative to the parametric factorial ANCOVA. It is well

known that good nonparametric tests for main effects exist. Thus, this study is

concerned with the tests of homogeneity of regression coefficients (slope-

treatment interaction) and interaction, either in the presence or absence of main

effects with varying degrees of variate and covariate correlation and nonnormality.
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3. METHODOLOGY

A completely randomized balanced design with fixed effects and one

covariate was used. The structural model representing the design was:

Yuk = p(x,,k )7)+a, + rJ + (az), + , (1)

(i = 1; j = J; and k = n), where I = 3, J = 4, and n = 3, 10, and 30.

The levels of variate ( Yuk ) and covariate ( Xuk ) correlation were p = 0, .3,

.6, and .9. By inspection of (1), note that the regression slope coefficient, p,

remained constant across groups. Thus, only Type I error was of concern with

respect to the test for homogeneity of regression coefficients.

The treatment effect patterns modeled in (1) were as follows:

1. The main effect 't nonnull, the main effect a null, and the interaction

(az) null:

1(a). z, = c ;

1(b). =1-2 = c ; and T3 = T4 = c .

2. The main effects 2 and a nonnull, and the interaction (az) null:

2(a). T2 = a1 = c ; and 'r3 = a2 = c ; and

2(b). T3 = a1 = c ; and z, = T2 = T4 = a3 = -C .

3. The (az) interaction nonnull, and the main effects 2 and a null:

3(a). (az),, = (az)33 = c ; and (az)13 = (az)31= c ;

3(b). (az),, = (az)14 = (az)32 = (az)33 = c ; and

(ccr)12 = (a1")13 = (ocr)31 = (az)34 =c.

4. The main effect z and the (az) interaction nonnull, and the main effect

a null:

4(a). (az) 1, = c ; and (az)14 = c ;

4(b). (az),, = (az)12 = (az)31 = (az)32 =c; and

(occ)13 = (at)14 = (aT)33 = (at)34 =c.

3 5



5. The main effects z , a , and (at) interaction are nonnull:

5(a). (al-)21= (otr)24 = c

5(b). (ocr) = (a` )12 = (a'r)32 = (at)33 = (at)34 = c ; and

(ar)13 = (ar)3, = (a-c),4 = -c .

The treatment effect sizes (c) ranged from c = 0.10o to c = 2.006, where c is the

standard deviation of the population from which samples were drawn, in

increments of 0.106. The null case was represented when c = 0.00 for all effects.

Five conditional distributions were simulated with zero means, unit

variances, and varying amounts of skew (71) and kurtosis (y2 ). A shift parameter

was added to model the treatment effects. In all experimental situations, the

variate and covariate followed the same distributions. The first conditional

distribution selected was a standard normal distribution (71 = 0.0 and y2 = 0.0).

The other four conditional nonnormal distributions simulated were: (a) symmetric

and light-tailed (y, = 0.0 and y2 = 1.15132), (b) symmetric and extremely

heavy-tailed ( 7, = 0.0 and y2 = 25), asymmetric and moderately heavy-tailed ( 7,

= 1.633 and y2 = 4), and (d) extremely asymmetric and heavy-tailed ( y1= 18-

and y2 = 12).

The steps employed for data generation follow the model developed by

Headrick and Sawilowsky (1999) for simulating multivariate nonnormal

distributions. This procedure generates correlated nonnormal distributions by

combining the Fleishman (1978) power method with a generalization of Theorems

1 and 2 from Knapp and Sowyer (1967).

The Headrick and Sawilowsky (1999) procedure generated the Yk and

X,Jk for the ij -th group in (1) from the use of the following equations:

Yuk = a +bY,;+(a)Y,j*: +dY,j*: + c and (2)

XUk = a + bXisik +(a)X,;: +dX,.:k . (3)
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The resulting Kik and X,Jk were distributed with group means of 6,c and zero

(respectively), unit variances, the desired values of y, and y2, and the desired

within group correlation (p). The value of 8,jc was the shift parameter added to

the ij-th group for the treatment effect pattern considered. The coefficients a, b,

and d were determined by simultaneously solving Fleishman's Equations 5, 11,

17, 18 (Fleishman, 1978, p. 523) for the desired values of y, and 72 . The values

of and X,*k in (2) and (3) were generated using the following algorithms:

*2

17; = Zuk P + p and (4)

2
X ,;k = Z p* + VVijk 1 -p , (5)

where the Zuk , and 147,:ik were N iid (0,1). The resulting Yij*k and X k wereu

also N iid (0,1) and were correlated at the intermediate value p
*2

. The

intermediate correlation, which was different from the desired post-correlation

(p) except under conditional normality, was determined by solving Equation (7b)

for the bivariate case from Headrick and Sawilowsky (1999) for p* .

Values of a, b, d, and p* , were solved using the IMSL subroutine NEQNF

(Visual Numerics, 1994, p. 796). These values, along with the post and

intermediate correlation values p and p
*2

, are compiled in Table I.

F statistics for main effects, interaction, and homogeneity of regression

coefficients were computed on the raw scores and their ranks for the 5 (type of

distribution) x 4 (level of variate/covariate correlation) x 3 (sample size) x '21

(treatment effect size) x 10 (treatment pattern) situations. The F statistics were

calculated using the sums of squares approach given in Winer, Brown, and

Michels (1991) for factorial ANCOVA. Using the F table of percentage points,

the proportions of hypotheses rejected for each effect at the .05 and .01 a levels

were calculated. Ten thousand repetitions were used for each experiment.

5
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TABLE I

Values of a, b, d, post-correlations (p), and intercorrelations (p'2) used in the
Headrick and Sawilowky (1999) procedure to simulate the correlated (non)normal
distributions.

Distribution a

1 0.0 1.0 0.0 .00 .00
.30 .30
.60 .60
.90 .90

2 0.0 1.34112 -0.13146 .00 .00
.30 .330532
.60 .638209
.90 .914295

3 0.0 0.25370 0.21380 .00 .00
.30 .382012
.60 .689843
.90 .930689

4 -0.25950 0.88070 0.01621 .00 .00
.30 .330284
.60 .631979
.90 .911219

5 -0.52070 0.61460 0.02007 .00 .00
.30 .434039
.60 .712010
.90 .933780

Note. The distributions are: (1) standard normal (µ = 0; a =1; y, = 0; y2 = 0 );
(2) symmetric and light-tailed (u = 0; a =1; y, = 0; 72 = 1.15132 );

(3) symmetric and extremely heavy-tailed (u = 0; a = 1; y, = 0; y2 = 25 );
(4) asymmetric and moderately heavy-tailed = 0; a = 1; y, = 1.633; y2 = 4 );

(5) extremely asymmetric and heavy-tailed (u = 0; a = 1; yi = 'NN; 72 = 12 ).

The computers used to carry out the Monte Carlo were Pentium and

Pentium II-based personal computers. All programs were developed using Lahey

Fortran 77 version 3.0 (1994), supplemented with various subroutines from

RANGEN (Blair, 1987).

6
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4. RESULTS

Type I error and power results are presented in the tables by conditional

distribution, sample size, and the treatment effect pattern simulated. The

conditional distributions reported are: 71 = 0.00 and y2 = 0.00; y, = 0.00; y2 =

1.1532; y, = ,,/§ and y2 = 12; and y, = 0.00 and y2 = 25. (A complete set of

tables is available from the first author.) With respect to Type I error, the effect

pattern presented is 2(b): r3 = al= c; and r 1= r2 = r4 = a3 = c , and the sample

size presented is n = 30. The effect pattern presented for power analysis is 5(a):

(a'r)21 = (ar)24 = c , and the sample sizes presented are n= 3 and n = 10.

The entries in Table H and Table In provide empirical averages of the

variate and covariate correlation, skew, and kurtosis with the population

parameters used in the simulation. They were obtained by using an averaging

procedure described below.

To demonstrate the adequacy of the Headrick and Sawilowsky (1999)

procedure, average values of p(p ), y, (71), and 72(72) were obtained

separately for each sample size and conditional distribution. Values of p are

reported in Table 11 and values of y, and 72 are reported in Table DI

For each repetition, separate values of py , 7, , and 72 for each of the IJ

groups were computed for the variate and covariate. The average value of py(p)

was obtained by averaging the p,1 across the IJ groups. Average values of

(7,..) and 7,, (7,..) were obtained by (a) averaging the values of y, and 72u

for the variate with the values of 7, and 72, for the covariate in the respective 1j-

th group and then (b) averaging the values from step (a) across the IJ groups. The

p.., y, , and were subsequently averaged across 10,000 (replications) x 21

(effect size) situations to obtain the overall averages; p, y, , and 72 which appear

in Tables II and III. The Headrick and Sawilowsky (1999) procedure produced

7



excellent agreement between p , y, , and Y2 and the population parameters

considered.

TABLE II

Average values of variate/covariate correlation ( p ) computed in the simulation.

1 2

Distribution
3 4 5

3 .00 .000 -.001 .000 .002 -.003
.30 .299 .300 .301 .299 .302
.60 .600 .598 .599 .600 .601

.90 .901 .901 .898 .899 .900

10 .00 .000 .000 -.001 .000 .002
.30 .300 .300 .298 .301 .299
.60 .600 .599 .601 .601 .602
.90 .900 .899 .900 .900 .900

30 .00 .000 .000 -.001 .000 .001

.30 .300 .299 .298 .300 .300
.60 .600 .600 .600 .599 .601

.90 .900 .900 .901 .900 .899

Note. n denotes the sample size. Values of p were based on 210,000 repetitions.
The distributions are: (1) standard normal (u = 0; a =1; y, = 0; y2 = 0 );
(2) symmetric and light-tailed (At =0; a= 1; yl =0; y2 = 1.15132 );

(3) symmetric and extremely heavy-tailed (,u = 0; a = 1; y, = 0; y2 = 25 );
(4) asymmetric and moderately heavy-tailed Cu = 0; a = 1; y, = 1.633; y2 = 4 );

(5) extremely asymmetric and heavy-tailed (u = 0; 6 = 1; y, =1/8-; y2 = 12 ).

The Type I error and power analyses for the tests of interaction and

homogeneity of regression coefficients are compiled in Table IV through Table

XV. The column entries from left to right denote (a) the treatment effect size "c";

(b) Fi and Fh represent the parametric ANCOVA tests of interaction and

homogeneity of regression coefficients; and Fi(r) and Fh(r) represent the RT

ANCOVA tests of interaction and homogeneity of regression coefficients; (c) the

nominal alpha levels; and (d) the proportion of rejections for the tests under the

various levels of variate and covariate correlation and other parameters

considered.

8

10



TABLE III

Average values of skew (7, ) and kurtosis (y2) computed in the simulation.

Symmetric Distributions
7, 0.000 0.000 0.000

Y2 0.000 -1.151 25.000

n 72 72 7271

3 -0.002 0.003 0.001 -1.150 -0.002 25.002

10 0.001 0.000 -0.002 -1.152 -0.001 25.000

30 0.000 0.000 -0.001 -1.151 0.000 25.001

Asymmetric Distributions

71 1.633

Y2 4.000 12.000

n Y, 71
3 1.635 4.002 2.830 12.002

10 1.632 4.000 2.826 12.001

30 1.633 4.001 2.827 12.001

Note. n denotes the sample size. The average values of skew (71) and kurtosis
(y2) were each based on 210,000 repetitions.

Type I Error: Normal Distribution. The Type I error rates are compiled in

Table IV for n = 30. As expected, the parametric F tests maintained Type I error

rates close to nominal alpha levels for the tests of interaction and homogeneity of

regression slopes. They were within the closed interval of

a ± 1.96Va(1-a) I 10000 .

However, the results in Table IV indicate that the RT produced extremely

liberal Type I error rates for values of c 0.80. For example, with p = .90 and

nominal alpha equal .05, the Type I error rates reached as high as .998 and 1.00

for the RT tests of interaction and homogeneity of regression coefficients,

respectively.



Type I Error: Nonnormal Distributions. As indicated by the entries in

Tables V, VI, and VII, when the conditional distributions were nonnormal, both

procedures displayed unreasonable and erratic Type I error rates for the test of

homogeneity of regression coefficients. With respect to the F test, the Type I error

rates were extremely liberal when the conditional distribution being simulated

possessed positive y2 and ultra-conservative when the conditional distribution

possessed negative y2. In general, the degree of inflation or conservatism for both

procedures was contingent on the set of parameters being simulated.

With respect to the test for interaction, the results in Tables V, VI, and VII,

indicate that the F test was robust with respect to Type I error. However, the RT

test for interaction exhibited more severely inflated Type I error rates at smaller

values of c than for the case of when the conditional distribution was normal. For

example, in Table VII with the variate and covariate distributed with values of y,

= 0.00, y2 = 25, c = 0.30, and p = .90, the Type I error rate was .253 for the RT

ANCOVA.

The other conditional nonnormal distribution modeled, but not presented

in the tables, also resulted in similar Type I error rate inflations for the RT test for

interaction. More generally, there was a pattern of Type I error inflation: ceteris

paribus, the larger the departure from normality, the more severe the Type I error

inflations became for the RT test.

With regard to the other treatment effects modeled, the RT ANCOVA was

robust with respect to the test of interaction only under certain circumstances. This

occurred when (a) all effects were null, (b) the treatment effect pattern contained

only an interaction, or (c) if and only if one main effect was present.

Power: Normal Distribution. As anticipated, the results compiled in

Tables VIII and IX indicate a comparative power advantage for the F test when

the conditional distribution was normal. For small effect sizes and low

variate/covariate correlations, the RT rejected at a rate slightly below the F test.
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However, for moderate to large effect sizes and moderate to strong

variate/covariate correlations, the RT exhibited a power loss. For example, the

results in Table VIII indicate that for values of, c = 1.30, and p = .90 the F test

was rejecting at a rate of .788, but the RT was rejecting at a rate of only .572.

Similar power losses for the RT are reported in Table IX for n = 10.

TABLE IV

Type I Error Rates for Interaction and Homogeneity of Regression Coefficients for
the model 'r = al = c ; and 1-1 = T2 = 4 = a3 = -c . Y = X = Standard Normal

Distribution. Sample size is n = 30.

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .050 .050 .053 .050

.010 .010 .010 .011 .011
Fi(r) .050 .052 .050 .052 .052

.010 .010 .009 .010 .010

Fh .050 .048 .048 .047 .049
.010 .010 .010 .010 .010

Fh(r) .050 .049 .043 .025 .032
.010 .009 .008 .004 .007

0.80 Fi .050 .053 .049 .050 .050
.010 .011 .010 .010 .011

Fi(r) .050 .116 .127 .167 .435
.010 .030 .035 .050 .225

Fh .050 .050 .047 .051 .051
.010 .010 .010 .010 .011

Fh(r) .050 .054 .066 .174 .973
.010 .012 .016 .051 .951

1.30 Fi .050 .051 .048 .052 .048
.010 .010 .010 .010 .011

Fi(r) .050 .781 .826 .930 .998
.010 .491 .555 .770 .991

Fh .050 .047 .048 .051 .052
.010 .009 .011 .010 .012

Fh(r) .050 .053 .093 .466 1.00
.010 .013 .025 .218 1.00

Note. Fi, Fh denote the parametric tests and Fi(r) and Fh(r) denote the rank transform
(RT) tests for Interaction and Homogeneity of Regression Slopes, respectively. a
denotes nominal alpha. 10,000 repetitions were used to generate the tabled values.
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Power: Nonnormal Distributions. The power results for nonnormal

distributions are reported in Tables X through XV. As indicated in Tables X and

XI, where the conditional distribution was symmetric and light-tailed, the

parametric F test held a power advantage over the RT. The power advantage in

TABLE V

Type I Error Rates for Interaction and Homogeneity of Regression Coefficients for
the model T3 = a, = c ; and T1 = T2 = Z4 = a 3 = -c . Y = X = (µ= 0; = 1; y, =0;
y2 = -1.15132 ). Sample size is n = 30.

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .052 .049 .053 .056

.010 .012 .010 .012 .012
Fi(r) .050 .052 .051 .053 .061

.010 .012 .010 .012 .013

Fh .050 .054 .046 .023 .009
.010 .011 .009 .005 .004

Fh(r) .050 .051 .043 .019 .007
.010 .011 .008 .002 .004

0.80 Fi .050 .055 .055 .052 .052
.010 .012 .013 .010 .012

Fi(r) .050 .096 .101 .119 .338
.010 .025 .027 .034 .159

Fh .050 .054 .043 .025 .009
.010 .013 .008 .006 .005

Fh(r) .050 .058 .063 .140 .994
.010 .013 .013 .035 .964

1.30 Fi .050 .053 .057 .054 .051
.010 .011 .014 .012 .010

Fi(r) .050 .708 .763 .900 .998
.010 .385 .462 .704 .990

Fh .050 .054 .044 .024 .009
.010 .011 .009 .006 .004

Fh(r) .050 .064 .099 .489 1.00
.010 .016 .026 .218 1.00

Note. F1, Fh denote the parametric tests and Fi(r) and Fh(r) denote the rank transform
(RT) tests for Interaction and Homogeneity of Regression Slopes, respectively. a
denotes nominal alpha. 10,000 repetitions were used to generate the tabled values.



favor of the F test became more pronounced as either the effect size or strength of

the variate/covariate correlation increased. However, the results reported for the

extremely asymmetric/heavy-tailed and symmetric/extremely heavy-tailed

distributions differed from the results of the standard normal and symmetric/light-

TABLE VI

Type I Error Rates for Interaction and Homogeneity of Regression Coefficients for

the model T3 = al = c; and T1 = T2 = 1-4 = a3 = -c . Y = X=(u = 0;c = 1; y, =
y2 =12 ). Sample size is n = 30.

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .052 .048 .051 .051

.010 .009 .011 .012 .012
Fi(r) .050 .092 .091 .111 .196

.010 .026 .025 .032 .074

Fh .050 .095 .565 .829 .926
.010 .046 .403 .706 .847

Fh(r) .050 .069 .129 .403 1.00
.010 .018 .040 .190 .998

0.80 Fi .050 .049 .052 .051 .052
.010 .010 .010 .010 .011

Fi(r) .050 .515 .546 .655 .881
.010 .258 .282 .404 .739

Fh .050 .097 .561 .828 .923
.010 .046 .390 .697 .847

Fh(r) .050 .068 .182 .627 1.00
.010 .020 .068 .363 .999

1.30 Fi .050 .051 .050 .050 .050
.010 .010 .012 .009 .012

Fi(r) .050 .972 .981 .991 .998
.010 .888 .911 .954 .993

Fh .050 .094 .561 .819 .919
.010 .042 .390 .693 .838

Fh(r) .050 .070 .187 .659 1.00
.010 .020 .070 .392 1.00

Note. F1, Fh denote the parametric tests and Fi(r) and Fh(r) denote the rank transform
(RT) tests for Interaction and Homogeneity of Regression Slopes, respectively. a
denotes nominal alpha. 10,000 repetitions were used to generate the tabled values.
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tailed distributions. Specifically, when the effect sizes modeled were weak, the

RT ANCOVA held a decisive power advantage over the F test for these

nonnormal distributions. For example, when the conditional distribution had

values of y, = , y2 = 12, n = 3, c = 0.30, and p = .90, the results in Table XII

TABLE VII

Type I Error Rates for Interaction and Homogeneity of Regression Coefficients for
the model T3 = = C ; and Ti =

y2 = 25 ). Sample size is n= 30.

= Z4 = (X3 = -C . Y = X = ( = 0; a =1; y, =0;

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .052 .045 .052 .052

.010 .011 .010 .011 .010
Fi(r) .050 .090 .091 .118 .253

.010 .025 .022 .035 .118

Fh .050 .113 .471 .902 .985
.010 .061 .326 .821 .967

Fh(r) .050 .055 .065 .151 .602
.010 .012 .016 .051 .425

0.80 Fi .050 .049 .049 .050 .052
.010 .010 .010 .009 .010

Fi(r) .050 .620 .680 .822 .952
.010 .361 .443 .639 .888

Fh .050 .113 .463 .900 .983
.010 .061 .320 .820 .965

Fh(r) .050 .058 .131 .545 .944
.010 .015 .040 .327 .885

1.30 F1 .050 .047 .052 .048 .052
.010 .008 .010 .009 .011

Fi(r) .050 .987 .990 .998 1.00
.010 .937 .963 .990 .999

Fh .050 .112 .460 .899 .987
.010 .061 .319 .820 .966

Fh(r) .050 .062 .179 .743 .982
.010 .017 .063 .529 .961

Note. Fi, Fh denote the parametric tests and Fi(r) and Fh(r) denote the rank transform
(RT) tests for Interaction and Homogeneity of Regression Slopes, respectively. a
denotes nominal alpha. 10,000 repetitions were used to generate the tabled values.
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TABLE VIII

Power Analysis for the test of Interaction and for the model (ar)21 = (a'r)24 = C

Y = X = Standard Normal Distribution. Sample size is n= 3.
Correlation (p)

c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .056 .056 .058 .076

.010 .011 .011 .013 .017
Fi(r) .050 .0575 .056 .056 .070

.010 .012 .013 .014 .015

0.80 Fi .050 .091 .093 .118 .341
.010 .022 .025 .030 .133

Fi(r) .050 .090 .093 .108 .250
.010 .023 .023 .029 .036

1.30 Ft .050 .177 .191 .268 .788
.010 .053 .062 .100 .525

Fi(r) .050 .156 .170 .220 .572
.010 .047 .054 .074 .305

Note. R and Fl(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.

TABLE IX

Power Analysis for the test of Interaction and for the model (ocT)21 = (OCT),4 = c .

Y =X = Standard Normal Distribution. Sample size is n = 10.
Correlation (p)

c Statistic a 0.0 23 0.6 0.9
0.30 Fi .050 .073 .075 .090 .202

.010 .016 .016 .020 .069
Fi(r) .050 .073 .074 .086 .176

.010 .016 .017 .020 .055

0.80 Fi .050 .278 .305 .419 .950
.010 .104 .116 .198 .839

Fi(r) .050 .250 .272 .377 .884
.010 .097 .103 .167 .713

1.30 Fi .050 .676 .722 .880 1.00
.010 .418 .477 .706 1.00

Fi(r) .050 .612 .655 .812 .999
.010 .347 .397 .595 .994

Note. Fi and Fi(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.
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TABLE X

Power Analysis for the test of Interaction and for the model (06T)21 = (ccr)24 = c
Y= X= (it = 0; a =1; y1 =0; y2 = -1.15132 ). Sample size is n= 3.

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .056 .057 .061 .076

.010 .012 .012 .014 .016
Fi(r) .050 .058 .056 .059 .072

.010 .012 .011 .013 .014

0.80 Fi .050 .094 .098 .115 .337
.010 .022 .025 .030 .135

Fi(r) .050 .090 .089 .104 .247
.010 .020 .024 .028 .087

1.30 Fi .050 .170 .172 .257 .775
.010 .050 .052 .092 .517

Fi(r) .050 .140 .155 .204 .556
.010 .038 .046 .066 .280

Note. R and Fi(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.

TABLE XI

Power Analysis for the test of Interaction and for the model (a-c)21 = (aT)24 = c .

Y = X = (At = 0; a =1; y, = 0; 72 = -1.15132 ). Sample size is n= 10.

Correlation (p)
c Statistic a 0.0 03 0.6 0.9
0.30 Fi .050 .076 .078 .088 .201

.010 .017 .016 .021 .068
Fi(r) .050 .076 .075 .083 .181

.010 .017 .017 .020 .059

0.80 Fi .050 .270 .292 .424 .943
.010 .101 .112 .194 .826

Fi(r) .050 .226 .243 .352 .869
.010 .079 .089 .146 .682

1.30 Fi .050 .674 .733 .877 1.00
.010 .418 .469 .707 .999

Fi(r) .050 .549 .593 .769 .999
.010 .294 .335 .541 .995

Note. E and Fl(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.

18
16



TABLE XII

Power Analysis for the test of Interaction and for the model (ott)21 = (ar)24 =

Y = X = (u = 0; a =1; 71 = J; 72 = 12 ). Sample size is n= 3.

Correlation (p)
c Statistic a 0.0 0.3 0.6 a9
0.30 Fi .050 .050 .051 .051 .087

.010 .013 .012 .014 .020
Fi(r) .050 .084 .086 .090 .140

.010 .021 .021 .022 .039

0.80 Fi .050 .094 .104 .139 .428
.010 .025 .027 .040 .206

Fi(r) .050 .147 .157 .183 .400
.010 .043 .046 .057 .161

1.30 F1 .050 .230 .247 .340 .824
.010 .080 .092 .146 .619

Fi(r) .050 .221 .245 .291 .601

.010 .075 .091 .104 .318

Note. Fi and E(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.

TABLE XIII

Power Analysis for the test of Interaction and for the model (oz)21 = 24 = c .

Y =X= (t =0;cr =1; y1 = 72 = 12 ). Sample size is n=10.

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .072 .072 .086 .214

.010 .016 .015 .020 .075
Fi(r) .050 .175 .187 .226 .552

.010 .056 .060 .076 .295

0.80 Fi .050 .287 .331 .457 .945
.010 .113 .142 .233 .849

Fi(r) .050 .582 .612 .735 .987
.010 .314 .347 .469 .943

1.30 Fi .050 .692 .742 .878 1.00
.010 .458 .527 .724 .999

Fi(r) .050 .845 .876 .941 1.00
.010 .625 .670 .803 .997

Note. E and Fi(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.
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TABLE XIV

Power Analysis for the test of Interaction and for the model (az)21 = (at)24 = c .

Y = X = ( ,u = 0; = 1; y1 =0; y2 = 25 ). Sample size is n = 3.

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fi .050 .038 .044 .052 .097

.010 .007 .008 .012 .029
Fi(r) .050 .076 .080 .103 .212

.010 .019 .021 .028 .071

0.80 Fi .050 .104 .112 .162 .517
.010 .025 .030 .049 .280

Fi(r) .050 .167 .191 .283 .637
.010 .055 .062 .104 .390

1.30 Fi .050 .251 .277 .406 .854
.010 .093 .111 .194 .703

Fi(r) .050 .252 .291 .436 .518
.010 .090 .109 .201 .606

Note. R and Fi(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.

TABLE XV

Power Analysis for the test of Interaction and for the model (oz)21 = (aT)24 = c .

Y = X = (,u = 0; cr =1; y1 =0; y2 = 25 ). Sample size is n= 10.

Correlation (p)
c Statistic a 0.0 0.3 0.6 0.9
0.30 Fl .050 .069 .074 .090 .250

.010 .015 .016 .020 .090
Fi(r) .050 .178 .204 .306 .821

.010 .061 .068 .124 .613

0.80 F1 .050 .313 .346 .491 .945
.010 .130 .152 .264 .860

Fi(r) .050 .629 .703 .888 .999
.010 .382 .461 .719 .997

1.30 Fi .050 .707 .753 .882 .999
.010 .493 .548 .747 .997

Fi(r) .050 .877 .915 .986 1.00
.010 .694 .772 .942 .999

Note. R and R(r) denote the parametric and rank transform (RT) tests. a denotes
nominal alpha. 10,000 repetitions were employed to generate the tabled values.



indicate that the proportion of rejections for the RT ANCOVA was .140, whereas

the proportion of rejections for the F test was .087. Similarly, when the

conditional distribution had values of y, = 0, y2 = 25, n = 10, c = 0.30, and p =

.60, the results in Table XV indicate that the proportion of rejections for the RT

ANCOVA was .306, whereas the proportion of rejections for the F test was .090.

However, the RT ANCOVA loses its power advantage over the F test as

either the effect size and/or correlation increase. For example, when the

conditional distribution had values of y, = 0, y2 = 25, n = 3, c = 1.30, and p =

.90, the results in Table XIV indicate that the proportion of rejections for the RT

was only .518, whereas the proportion of rejections for the F test was .854.

The pattern that was pointed out with respect to the RT's Type I error

inflations for the test of interaction was also evident in terms of power. That is,

the larger the departure was from conditional normality, the more severe the

power loss for the RT. Similarly, when the RT was robust with respect to Type I

error, the RT maintained a power advantage over the parametric F test when either

(a) the treatment effect pattern contained only an interaction, or (b) if and only if

one main effect was present.

5. DISCUSSION

With respect to the test of homogeneity of regression coefficients,

violating the assumption of conditional normality adversely affects the parametric

ANCOVA's Type I error rates. Contingent on the conditional distribution and

strength of variate/covariate correlation, the lack of robustness of the F test ranged

from ultra-conservative to ultra-liberal. Thus, the results of this study invalidate

the parametric F test as a test for parallelism when the variate and covariate are

nonnormally distributed. Conover and Iman (1982, Table 4) also reported

increased Type I error rates for this test when the variate followed either a

lognormal or Cauchy distribution. For example, when the distribution was



Cauchy, Conover and Iman (1982) reported a Type I error rate of .103 (a = 0.05).

It should be noted that the covariate was normally distributed for all experimental

situations in the Conover and Iman (1982) study.

Although the focus in this study was on moderate to severe departures

from conditional normality, Headrick (1997) also demonstrated empirically that

even for small departures from conditional normality, the F test produced either

conservative or liberal Type I error rates for the test of equal slopes. For example,

when the variate and covariate possessed values of yl = 0.0, y2 = -0.34 or )1, =

0.0, y2 = 0.31, with p = .60, and for large sample sizes, the Type I error rates

reported were .020 and .100.

Unlike the parametric F test for parallelism, the RT test failed when both

the variate and covariate were normally distributed. Further, the erratic Type I

error rates associated with the RT depended not only on the conditional

distribution and strength of the variate/covariate correlation, but also the treatment

effect pattern being modeled. Furthermore, in the absence of any treatment effect,

the RT became ultra-conservative as the strength of the variate/covariate

correlation and/or sample size increased. Consequently, such conservative Type I

error rates leave the researcher conducting the RT ANCOVA test without

guidance from a preliminary test of underlying assumptions. Thus, and like the

parametric test, the results of this study also invalidate the RT as a test for the

homogeneity of regression coefficients.

With respect to the test of interaction, the RT procedure resulted in severe

Type I error inflations. As a result, it is interesting to compare the RT and

parametric procedures in terms of their expected group means to show how the

parametric procedure is not invariant under monotone transformations. In terms of

this experiment, the nonlinear nature of the RT reversed the absence of interaction

in the original scores when both main effects were present.
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In order to demonstrate this, it is only necessary to consider the case where

the IJ groups in (1) have an absolutely continuous normal distribution. The

stochastic disturbance terms in (1) are assumed to be independently and

identically distributed with zero means and unit variances.

Specifically, if y denotes an observation of the Kik from the ij-th group in

(1) and A.(i, j,k)= 1 or 0 indicating the scores of the Kik < y or Yuk > y, then the

rank of y (R.) can be defined as,

R,. =1+111A(i, j,k). (6)
i j k

It follows that the expected value of R, in the ij -th group can be expressed as,

ELR).]=1 + Pr {Yijk < y} . (7)

Suppose y is any observation of the Kik in the az -th group from (1). Then

(7) can be rewritten to express the expected value of R1 as,

E[R } =1 + 1 (n 1) + I Prkk < y}, (8)
2 i#a j#1- k

where the value !(n 1) indicates the sum of Pr {Yijk < y} for the Yijk # y in the
2

a'r -th group.

Because the Kik have the same expectation within their respective tj-th

group, (8) can be simplified by expressing the term E Pr{Yuk < y} in terms
i#a jxr k

of the population means for the Kik . Thus, let par denote the population mean of

the Yijk in the CX2 -th group. Further, let Atij denote the population means of the

other IJ 1 groups of the yik not belonging to the ar -th group. It follows that (8)

can be expressed in terms of the expected group means for the ranks as

*a, 1= 1 + 1 (n 1) + n E Prly, < gar }. (9)
2



To determine the Pr {pij < par } in (9) let

Par
Zu = 5 ij#ar (10)

Thus, the expected value of the ranks in the at -th group can be computed as,

1 , 1E[Raj=1+(n-1)+nEIS; e 2 dw.
2 j 27r

A comparison of the expected group means and their corresponding values

of interaction between the original scores and their associated ranks are presented

in Table XVI through Table XIX for the case of n= 30, -t-3 = at = 0.80 , and

rl = = `1.3 = 1.4 = 0.80. This model indicates both main effects are nonnull

and the interaction is null. This example is also associated with the results

presented in Table IV. By inspection of Table XVII and Table XIX, note that the

original scores indicate no interaction while their ranks indicate an interaction.

To illustrate the computation of an expected group mean for the ranked

data, consider the group a123 in Table XVIII where the expected group mean is

316.352. This value was determined by the following steps: (a) use Equation (10)

to compute the values of the zu

these values are: z =i,
1.60 0.00 1.60 0.00 1.60 0.00

; z 12 = , Z14 j
1.60 ( 0.80) 1.60 ( 0.80) 1.60 0.80 1.60

Z21 = Z22 / Z23 r , Z24 =

1.60 ( 1.60) 1.60 ( 1.60) 1.60 0.00 1.60
Z31 Z32 -, Z33 , Z34

( 0.80)

( 1.60)
VY

and (b), compute the expected group mean for the ranked data by entering each

value from step (a) into the upper limit of the integral in Equation (11). Hence,

E[Rn ]= 316.352 =1+1(30
2

1)+30
.8710

.9552

.9882

+.8710 +.8710

+ .7142 + .9552

+.8710+.9882

+.9552 +

+ .9882 +



TABLE XVI

Expected Group Means of the raw scores; T3 = al = c and 21= T2 = 24 = a3 = -c ;

c = 0.80; Y= X = Standard Normal Distribution; and n = 30 as in Table IV.
T1 T2 T3 T4

al 0.000 0.000 1.600 0.000

a, -0.800 -0.800 0.800 -0.800

a3 -1.600 -1.600 0.000 -1.600

TABLE XVII

Interactions of the raw scores; T3 = al = c and 1-, = T2 = 24= a3 = -c ; c = 0.80;
Y= X = Standard Normal Distribution; and n = 30 as in Table IV.

21 1-2 23 T4

al 0.000 0.000 0.000 0.000
a2 0.000 0.000 0.000 0.000
a3 0.000 0.000 0.000 0.000

TABLE XVIII

Expected Group Means of the ranks; T3= al = c and 1-1 =1-2 = T4 = a3 = -c ; c =
0.80; Y = X = Standard Normal Distribution; and n = 30 as in Table IV.

Ti T2 T3 T4

al 215.615 215.615 316.352 215.615
a2 149.288 149.288 274.136 149.288
a3 88.396 88.396 215.615 88.396

TABLE MX

Interactions of the ranks; -1-3 = al = c and 21= T2 = T4 = a3 = -c ; c = 0.80;

V= X = Standard Normal Distribution; and n = 30 as in Table IV.
Ti T2 T3 T4

a, 4.216 4.216 -12.648 4.216
a2 -1.812 -1.812 5.436 -1.812
a3 -2.404 -2.404 7.213 -2.404
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The derivation of the expected group means of the ranked scores

demonstrates how the F test is not invariant under monotone transformations in

the sense that the probability structure of the original problem of testing for no

interaction is changed. Similar points were made by Blair, Sawilowsky, and

Higgins (1987) and Thompson (1991) with respect to the RT tests of interaction

for ANOVA designs. However, Type I error inflations can be much more

pronounced for smaller effect sizes or for smaller sample sizes when the inclusion

of a covariate is introduced. The results of this study invalidate the use of the RT

ANCOVA as an alternative to the F test of interaction in factorial ANCOVA.

6. CONCLUSION

Researchers and publishers of statistical software continue to recommend

the rank transformation (RT) as an alternative to parametric analysis. For

example, Kleinbaum, Kupper, Muller, and Nizam (1998) stated, "If the problem

concerns nonnormal distributions, methods of rank analysis (Conover and Iman

1981)...may be appropriate" (p. 249).

Similarly, the SAS (1995) and IMSL (1994) statistical packages promote

the use of the RT procedures with respect to general linear models without

restriction. For example, the most recent SAS manual states, "Many

nonparametric statistical methods use ranks rather than original values of a

variable. For example, a set of data can be passed through PROC RANK to obtain

the ranks for a response variable that could then be fit to an analysis-of-variance

model using the ANOVA or GLM procedures" (p. 493). The IMSL (1994) manual

states, "Many of the tests described in this chapter may be computed using the

routines described in other chapters after first substituting ranks for the observed

values" (p. 582).
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Based on results of this investigation, it is recommended that the rank

transformation procedure not be used as either a test for interaction or a test for

homogeneity of regression slopes in factorial ANCOVA. This is based on the

severely inflated Type I error rates when the null hypothesis of interaction was

true and while both main effects were nonnull regardless of the conditional

distribution or sample size being simulated. Similarly, the stronger the correlation

between the variate and covariate, the more serious was the Type I error inflation.

Further research on the comparative properties of other nonparametric tests, such

as Hettmansperger (1984), Puri & Sen (1969a), and the adjusted RT (Blair &

Sawilowsky, 1990; Salter & Fawcett, 1993) is warranted to find alternatives to the

parametric factorial ANCOVA.
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March 2000

Clearinghouse on Assessment and Eva lluation

Dear AERA Presenter,

University of Maryland
1129 Shriver Laboratory

College Park, MD 20742-5701

Tel: (800) 464-3742
(301) 405-7449

FAX: (301) 405-8134
ericae@ericae.net

http://ericae.net

Congratulations on being a presenter at AERA. The ERIC Clearinghouse on Assessment and
Evaluation would like you to contribute to ERIC by providing us with a written copy of your
presentation. Submitting your paper to ERIC ensures a wider audience by making it available to
members of the education community who could not attend your session or this year's conference.

Abstracts of papers accepted by ERIC appear in Resources in Education (RIE) and are announced to over
5,000 organizations. The inclusion of your work makes it readily available to other researchers, provides a
permanent archive, and enhances the quality of R/E. Abstracts of your contribution will be accessible
through the printed, electronic, and internet versions of R/E. The paper will be available full-text, on
demand through the ERIC Document Reproduction Service and through the microfiche collections
housed at libraries around the world.

We are gathering all the papers from the AERA Conference. We will route your paper to the
appropriate clearinghouse and you will be notified if your paper meets ERIC's criteria. Documents
are reviewed for contribution to education, timeliness, relevance, methodology, effectiveness of
presentation, and reproduction quality. You can track our processing of your paper at
http://ericae.net.

To disseminate your work through ERIC, you need to sign the reproduction release form on the
back of this letter and include it with two copies of your paper. You can drop of the copies of
your paper and reproduction release form at the ERIC booth (223) or mail to our attention at the
address below. If you have not submitted your 1999 Conference paper please send today or
drop it off at the booth with a Reproduction Release Form. Please feel free to copy the form
for future or additional submissions.

Mail to: AERA 2000/ERIC Acquisitions
The University of Maryland
1129 Shriver Lab
College Park, MD 20742

Sincerely,

Lawrence M. Rudner, Ph.D.
Director, ERIC/AE

ERIC/AE is a project of the Department of Measurement, Statistics and Evaluation
at the College of Education, University of Maryland.


